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Abstract

■ The brain is a complex, interconnected information process-
ing network. In humans, this network supports a mental work-
space that enables high-level abilities such as scientific and
artistic creativity. Do the component processes underlying
these abilities occur in discrete anatomical modules, or are they
distributed widely throughout the brain? How does the flow of
information within this network support specific cognitive func-
tions? Current approaches have limited ability to answer such
questions. Here, we report novel multivariate methods to ana-

lyze information flow within the mental workspace during visual
imagery manipulation. We find that mental imagery entails dis-
tributed information flow and shared representations through-
out the cortex. These findings challenge existing, anatomically
modular models of the neural basis of higher-order mental
functions, suggesting that such processes may occur at least
in part at a fundamentally distributed level of organization.
The novel methods we report may be useful in studying other
similarly complex, high-level informational processes. ■

INTRODUCTION

A hallmark of human cognition is the ability to volitionally
construct and flexibly manipulate mental representations.
Such abilities have been studied using several overlap-
ping psychological constructs including working memory
(Baddeley, 2003), mental imagery (Tong, 2013; Kosslyn,
Behrmann, & Jeannerod, 1995), visuospatial ability (Uttal
et al., 2013), mental models (Hegarty, 2004), analogical
reasoning (Bassok, Dunbar, & Holyoak, 2012), and men-
tal workspace (Logie, 2003). In general, these terms de-
note the ability to work volitionally and flexibly with
mental representations, a skill that underlies much of
human life from mundane tasks, such as planning seat-
ing arrangements at family get-togethers, to our species’
greatest artistic and scientific achievements. For instance,
Albert Einstein wrote that his scientific thought process
consisted primarily of “certain signs and more or less
clear images which can be ‘voluntarily’ reproduced and
combined” (Hadamard, 1954). Here, we will use Logie’s
term “mental workspace” to refer to the mental space in
which these flexible cognitive processes occur.
How does the human brain support the mental work-

space underlying flexible and creative mental phenomena
such as mathematical, scientific, and artistic thought
(Schlegel et al., 2015; Logie, 2003)? Understanding how
the brain enables the imaginative abilities of the mental
workspace is an important goal for many fields (Insel,
Landis, & Collins, 2013; Markram, 2012), and several
models have proposed potential mechanisms (Graham &

Rockmore, 2011; Tononi, 2008; Postle, 2006; Baddeley,
2003; Logie, 2003; Rumelhart & McClelland, 1986). A key
aspect of these behaviors and the models that attempt to
explain them is the ability to both represent and manipu-
late mental images. Previous research has shown that
manipulating visual imagery in the mental workspace
recruits a neural network extending throughout the cere-
bral cortex and associated structures (Schlegel et al.,
2013). An important question to answer concerning this
network is whether the component processes underlying
the network’s function (e.g., executive or representational
subsystems) occur in localized anatomical modules or
whether these component processes occur at a more
fundamentally distributed level of organization that tran-
scends anatomical boundaries. However, our ability to
measure and analyze complex informational processes that
are distributed widely in the human brain remains under-
developed, and thus, such questions are currently difficult
to answer (Barnett & Seth, 2014; Crowe et al., 2013; Lizier,
Heinzle, Horstmann, Haynes, & Prokopenko, 2011).

Manipulation of visual imagery requires multiple com-
ponent processes including (a) forming a mental repre-
sentation of an image and (b) performing an operation
to manipulate that representation. Standard models of
working memory propose that each of these component
processes is mediated by an anatomically localized neu-
ral “module.” As an example, the “central executive” in
Baddeley’s model of working memory has been pro-
posed to reside in dorsal lateral pFC (DLPFC) and direct
the maintenance of mental representations that are
stored in modality-specific regions such as visual cortex
for the “visuospatial sketchpad” or auditory cortex forDartmouth College
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the “phonological loop” (Crowe et al., 2013; Lee, Kravitz,
& Baker, 2013; Baddeley, 2003; Kane & Engle, 2002; Ishai,
Ungerleider, & Haxby, 2000). Similarly, Postle argues that
pFC is not involved in the representation of working
memory contents; instead, his model proposes that men-
tal representations are processed exclusively by domain-
specific sensory- or action-related regions (Postle, 2006).
Thus, although these models hold that working memory
and related abilities may recruit a “distributed” neural
network in the sense that the complex functions of the
network are mediated collectively by anatomically wide-
spread regions, the component processes that underlie
those complex functions are relegated to anatomically dis-
tinct modules. In many cases, arguments for anatomically
modular models are based on a failure to find (i.e., accep-
tance of the null hypothesis) or often even look for relevant
information in regions outside those that the models pro-
pose (Sreenivasan, Vytlacil, & D’Esposito, 2014; Lee et al.,
2013; Postle, 2006; Baddeley, 2003; Ishai et al., 2000). For
instance, both Lee and colleagues (2013) and Ishai and col-
leagues (2000) found information pertaining to the visual
but not the nonvisual aspects of working memory repre-
sentations in extrastriate visual cortex and found the oppo-
site for lateral pFC. Both groups interpreted their results to
suggest that extrastriate visual cortex processes the visual
aspects of working memory tasks but not the nonvisual
aspects and that lateral pFC processes the nonvisual but
not the visual aspects. Although such conclusions are a
common practice in the field, they amount to acceptance
of null results regarding the information that was not de-
tected in each respective area; they thus run the risk of fail-
ing to account for information that may have been present
but that was not detected by their methods. Baddeley’s
anatomically localized model of working memory similarly
relies on studies that either did not find or did not look for
relevant information outside the hypothesized regions
(Baddeley, 2003).

There is reason to believe that anatomically modular
models of working memory may be missing a piece of
the puzzle. Mounting empirical evidence derived from
new, network- and information-based analytical tech-
niques paints a more complex picture of high-level cog-
nitive processing, suggesting that it may, in many cases,
occur at a level of organization that transcends any sin-
gle neural structure (Sporns, 2014; Turk-Browne, 2013;
Bassett et al., 2010; Ester, Serences, & Awh, 2009; Van
den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009; Tononi,
2008; Rumelhart & McClelland, 1986). However, tradi-
tional techniques based on univariate differences in brain
activity and/or anatomically localized analyses are insensi-
tive to informational processes that occur via complex
patterns of interaction between regions. We therefore hy-
pothesized that novel, more-sensitive analytical methods
that target the complex informational structure of high-
level cognition and that consider information carried by
patterns of connectivity between regions would reveal
that the mental workspace emerges out of a fundamen-

tally distributed sharing of informational processes
throughout the cortex. This hypothesis runs contrary to
traditional modular accounts, which claim that informa-
tion is segregated to specific anatomical regions, such
as visual information occurring only in visual cortex or ex-
ecutive processing occurring only in pFC (Lee et al.,
2013; Postle, 2006; Baddeley, 2003; Ishai et al., 2000).
To evaluate our hypothesis and investigate how the

mental workspace network implements both the repre-
sentation and manipulation of visual imagery, we used
fMRI to record cortical activity as participants completed
a series of trials involving the mental manipulation of
shapes maintained in working memory. Our analyses in-
vestigated the distribution of neural information related
to two component processes of this task: the mainte-
nance of shapes in imagery and the mental manipulation
of those shapes. For each process, we asked where in the
cortex information related to that process occurred and
whether the nature of this information was consistent
with a fundamentally distributed or a modular processing
model.
During each trial, participants recalled one of four ab-

stract shapes memorized previously (Figure 1A) and per-
formed one of four mental operations on that shape
(90° clockwise rotation, 90° counterclockwise rotation, hori-
zontal flip, or vertical flip; Figure 1B). To enable the func-
tional analyses described below, the shapes were related
in a two-level hierarchy of similarity (see Figure 1A).
The operations shared an analogous relationship (see
Figure 1B). To ensure that neural activity associated with
the shapes and operations was because of visual imagery
rather than the presented visual stimuli, we constructed a
unique mapping for each participant from shapes to let-
ters and from operations to numbers. Each trial occurred
as follows: At the start of a trial, four letter–number pairs
(e.g., “C3”) appeared for 2 sec, with an arrow pointing to
a single pair to indicate the shape and operation for the
current trial. The other three pairs were shown as a visual
control to ensure that any successful classification analy-
ses were because of mental imagery rather than the visual
stimuli. After a 6-sec period during which the participant
performed the indicated mental operation, four shapes at
various orientations appeared on the screen for 2 sec.
One of these was the shape indicated previously, whereas
the other three shapes again served as a visual control. The
participant indicated whether the displayed shape was at
the orientation that would result from the indicated oper-
ation and was then given feedback regarding whether the
response was correct or incorrect (Figure 1C shows a trial
schematic).
Our analyses of the task-related fMRI data used a combi-

nation of existing and novel multivariate methods to inves-
tigate the informational structure of the network underlying
the mental workspace. First, we performed ROI classifica-
tion analyses with trials labeled based on either shape or
operation. These analyses investigated which regions sup-
ported information about mental representations and/or
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mental manipulations. Second, we developed a novel ROI
cross-classification analysis to investigate whether this in-
formation shared common characteristics between re-
gions. Third, we developed a novel classification analysis
on patterns of information flow between cortical regions

to determine how information related to the task was
transferred between regions. Each of these three types
of analysis could potentially provide evidence for either
a modular or distributed processing model. In combina-
tion, our analyses reveal that information about both men-
tal representations and mental manipulations is supported
by many regions across the cortex, that information about
at least mental representations shares common character-
istics across these regions, and that this information be-
comes distributed via complex, bidirectional patterns of
information flow between regions. Together, these find-
ings lend support to a fundamentally distributed model
of processing in the neural network underlying the mental
workspace.

METHODS

Participants

Nineteen participants (six women, aged 18–51 years)
with normal or corrected-to-normal vision gave informed
written consent according to the guidelines of the Commit-
tee for the Protection of Human Subjects at Dartmouth
College before participating. All experimental protocols
were approved by the Committee for the Protection of
Human Subjects (institutional review board #15822).
Participation consisted of two experimental sessions:
one behavioral session in which participants practiced
the task until they reached criterion (described below)
and a subsequent 1.75-hr fMRI scanning session.

Experimental Design

During each of a series of trials, participants performed
one of four mental operations on one of four abstract
visual shapes. The four mental operations were 90° clock-
wise rotation, 90° counterclockwise rotation, horizontal
flip, and vertical flip. The four abstract shapes are shown
in Figure 1: Two shapes were constructed from a 4 × 4
rectangular grid, and two were constructed from an anal-
ogous polar grid. All shapes were matched for area. To
equate the visual presentation between conditions, we
did not display the shape or operation to use in a given
trial. Instead, each shape was mapped to one of the let-
ters A, B, C, or D, and each operation was mapped to one
of the numbers 1, 2, 3, or 4. Each participant was as-
signed a unique mapping and spent the practice session
committing the shapes, operations, and mapping to
memory. The practice session concluded once the par-
ticipant responded correctly on 10 consecutive trials. At
the start of each trial, a 2-sec-long prompt screen dis-
played four letter–number pairs (e.g., “C3”). An arrow
pointed to one of these pairs to indicate the shape and
operation to use for the current trial. This screen was re-
placed by a fixation dot for 6 sec during which the partic-
ipant performed the indicated mental operation on the
indicated shape. After this period, a 2-sec-long test screen

Figure 1. Experimental design. (A) The four shapes used in the
experiment, related in a two-level hierarchical structure. Two shapes
were derived from a 4 × 4 rectangular grid, and two shapes were
derived from an analogous polar grid. At the bottom is a similarity
structure that represents the matrix form of the hierarchy. Each shape is
more similar to itself than it is to any other shape, and each rectangular
shape is more similar to the other rectangular shape than it is to either
polar shape (and vice versa). See Schlegel et al. (2013) for details on
the particular values used in the similarity structure. (B) The four mental
operations used in the experiment, also related in a two-level hierarchy:
90° clockwise rotation, 90° counterclockwise rotation, horizontal flip,
and vertical flip. The similarity structure for operations is constructed in
the same manner as for shapes. (C) Trial schematic. A 2-sec prompt
screen indicated the shape and operation for the current trial. This was
followed by a 6-sec blank screen during which the participant performed
the indicated operation on the indicated shape. Next, a 2-sec test screen
appeared, during which the participant indicated whether a displayed
shape matched the output of the indicated operation. Finally, the
participant was given response feedback.
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displayed each of the four shapes at various orientations
relative to the starting orientations learned by the partic-
ipants. The participant was instructed to identify the cur-
rent trial’s shape on the screen and indicate via a button
press within that 2-sec period whether it was in the orien-
tation that would result from the trial’s indicated opera-
tion. In half of the trials, the shape was in the correct
orientation, and in the other half, it was in a random,
incorrect orientation. During the fMRI session, the oper-
ations and shapes were counterbalanced across all trials,
and correct/incorrect trials and display positions were ran-
domized. To encourage attentiveness, participants were
paid based on their performance (receiving money for
correct responses and losing money for incorrect re-
sponses, with a minimum base rate of reimbursement).
Participants completed 15 fMRI runs, each of which con-
sisted of 16 trials interleaved with 8 sec of rest to ensure
that the BOLD response for a given trial was not influ-
enced by activity from the previous trial (5 min 28 sec
per run). Thus, each stimulus and operation occurred
four times per run (60 times in total during the experi-
ment), and 240 trials were administered over the scann-
ing session.

MRI Acquisition

MRI data were collected using a 3.0-T Philips (Amsterdam,
The Netherlands) Achieva Intera scanner with a 32-channel
sense head coil located at the Dartmouth Brain Imaging
Center. One T1-weighted structural image was collected
using a magnetization-prepared rapid acquisition gradi-
ent-echo sequence (repetition time [TR] = 8.176 msec,
echo time = 3.72 msec, flip angle = 8°, field of view =
240 × 220 mm, 188 sagittal slices, voxel size = 0.9375 ×
0.9375× 1mm, acquisition time= 3.12min). T2*-weighted
gradient EPI scans were used to acquire functional images
covering the whole brain (TR = 2000 msec, echo time =
20 msec, flip angle = 90°, field of view = 240 × 240 mm,
voxel size = 3 × 3 × 3.5 mm, slice gap = 0 mm, 35 slices).

MRI Data Preprocessing

High-resolution anatomical images were processed us-
ing the FreeSurfer image analysis suite (Dale, Fischl, &
Sereno, 1999). Standard preprocessing of fMRI data was
carried out: Data were motion and slice-time corrected,
high-pass filtered temporally with a 100-sec cutoff, and
smoothed spatially with a 6-mm FWHM Gaussian kernel,
all using FMRIB Software Library (FSL; Smith et al., 2004).
Data from each run were concatenated temporally for
each participant after aligning each run using FSL’s FLIRT
tool and demeaning each voxel’s time course. For the ROI
classification (described below), data were prewhitened
using FSL’s MELODIC tool (i.e., principal components
were extracted using MELODIC’s default dimensionality
estimation method with a minimum of 10 components
per ROI).

ROI Classification Analysis

Each trial could be labeled based on either the shape that
was represented in visual imagery or the operation that
was performed to manipulate that representation. For
each of these two labeling schemes, we used PyMVPA
(Hanke et al., 2009) to perform a four-way spatiotempo-
ral multivariate classification analysis in each of the six
ROIs that showed information pertaining to manipulation
of visual imagery in a previous study (see Figure 2A;

Figure 2. ROI classification results. (A) The six bilateral ROIs used in
the current experiment, derived from the results of a previous study
(see Methods). (B) Mean confusion matrix from a four-way classification
among mental representations across the entire mental workspace
network (compare with Figure 1A). (C) Analogous confusion matrix
from a classification among mental manipulations (compare with
Figure 1B). (D) Results of four-way classification analyses in each ROI.
Correlations between resulting confusionmatrices and similarity structures
in Figure 1 are Fisher’s Z transformed. Error bars are jackknife-corrected
standard errors of the mean (see Methods). Asterisks indicate significance
in a one-tailed jackknifed t test comparing Fisher’s Z-transformed
correlations with zero across participants (*p ≤ .05, ***p ≤ .001; *(n):
p ≤ 1 × 10−n). Results are FDR corrected for multiple comparisons
across the seven ROIs.
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Schlegel et al., 2013). Five of these (lateral occipital cor-
tex [LOC], posterior parietal cortex [PPC], precuneus
[PCU], DLPFC, and FEF) were bilateral ROIs that showed
greater activity during visual imagery manipulation than
visual imagery maintenance in a whole-brain, group-level
general linear model analysis. These ROIs were trans-
formed separately for each participant from Montreal
Neurological Institute space to that participant’s native
functional space for use in the current study. The remain-
ing mask (occipital cortex [OCC]) was defined anatomi-
cally in each participant’s native anatomical space using
the following labels from FreeSurfer’s cortical parcella-
tion: inferior occipital gyrus and sulcus, middle occipital
gyrus and sulci, superior occipital gyrus, cuneus, occipital
pole, superior occipital and transverse occipital sulci, and
anterior occipital sulcus (all bilateral). For the control ROI
analysis, the thalamus was defined functionally as above,
and the ventricle mask was defined anatomically from the
following FreeSurfer cortical parcellation masks: left and
right lateral ventricles, left and right inferior lateral ventri-
cles, third ventricle, fourth ventricle, and fifth ventricle.
For the spatiotemporal multivariate classification, we

used a linear support vector machine classifier and
leave-one-trial-out cross-validation. Because we only con-
sidered correct response trials, a nonuniform number of
trials existed for each condition and participant (57.4 tri-
als per condition on average [SEM = 0.203]; see Table S1
for details). Although the difference in number of trials
was small, we ensured that they could not affect the clas-
sification results by including a target balancing step in
our cross-validation procedure. In this step, each classifi-
cation fold was performed 10 times using random, bal-
anced samples of the data, and the results for that fold
were averaged across the 10 bootstrapped folds. For each
classification, we used the spatiotemporal pattern of pre-
whitened BOLD data from the first 3 TRs of each correct
response trial, shifted by 1 TR to account for the hemo-
dynamic response function (HRF) delay inherent in fMRI
data. We shifted by 1 TR only to include as much trial data
as possible without also including data that could have
been influenced by the test display. Prewhitening re-
duced each ROI’s voxel-based pattern to an average of
93.6 data features (SEM = 4.83). Thus, each classification
used spatiotemporal patterns of, on average, 280.8 dimen-
sions (SEM = 14.5). Each feature dimension was z scored
by run before classification to reduce between-run differ-
ences in signal that may have occurred because of scanner
or physiological noise.
Our measure of classifier performance was the correla-

tion between the confusion matrix resulting from the
classification and the matrix form of either the shape or
operation similarity structure (see Figure 1A and B). This
measure is more sensitive than classification accuracy
because it also takes into account confusions between
conditions that result from the hierarchical relationship
between the shapes and between the operations. We
used a jackknife procedure to perform random effects

analyses evaluating the significance of the correlations
(Miller, Patterson, & Ulrich, 1998). In the case of noisy
estimates such as individual subject confusion matrices,
jackknifed analyses can provide cleaner results without
biasing statistical significance (see Miller et al., 1998, for
more details on this method). In a jackknifed analysis
with N participants, N grand means of the data (in this
case, confusion matrices) are calculated, each with one
participant left out. The correlation between each of
these grand mean confusion matrices and the model sim-
ilarity structure was then calculated, and a one-tailed
t test evaluated whether the Fisher’s Z-transformed cor-
relations were positive (i.e., whether there was a signifi-
cant correlation between confusion matrices and the
model similarity structure across participants). Because
the jackknife procedure reduces the variance between
participants artificially, a correction must be applied to
the t statistic calculation; specifically, the sample standard
deviation between correlations is multiplied by the
square root of (N − 1).

ROI Cross-classification Analysis

To assess whether information about mental representa-
tions or mental manipulations was shared between areas,
we performed a cross-classification analysis in which a
classifier was trained on data from one ROI and tested
on data from a second ROI. This analysis used the same
procedures as the ROI classification analysis described
above. However, because the voxel-based feature space
of each ROI differed, data from pairs of ROIs needed to
be transformed into a common feature space before clas-
sification. To do this, we first used FSL’s MELODIC tool
to transform each ROI’s data from voxel space to 50 prin-
cipal component signals using PCA. After this step, each
ROI’s pattern had the same dimensionality, but those
patterns’ features would be unlikely to correspond across
ROIs. Therefore, for each pair of ROIs, these component
signals were matched pairwise as follows to maximize the
total similarity between component signals. First, the cor-
relation distance (1 − |r|) between each pair of compo-
nents was calculated, yielding a 50 × 50 correlation
distance matrix. Next, the rows and columns of this ma-
trix were reordered using the Hungarian algorithm to
minimize the matrix trace (Kuhn, 1955). The compo-
nents meeting along the diagonal of this reordered,
trace-minimized matrix defined the pairwise matching.
If two components were matched by this procedure
but were anticorrelated, one component was negated
to produce positively correlated component pairs. We
performed this matching procedure for each fold of the
cross-validation independently, excluding test data to
avoid inflating the similarity between training and testing
patterns artificially. Once this procedure was complete,
data from the two ROIs shared a common feature space,
that is, the two feature spaces had the same dimension-
ality, and corresponding features in the two spaces were
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maximally similar. Cross-classification could then proceed
by training the classifier on data from one ROI and testing
it on data from the other ROI. Each ROI served both as
the training set and as the testing set, with results aver-
aged between the two cases. Figure 3 provides a visual
schematic of the cross-classification analysis procedure.

Information Flow Classification Analysis

The goal of this analysis was to determine whether pat-
terns of directed connectivity between processes occur-
ring in pairs of ROIs could be used to classify either
mental representations or mental manipulations. To this
end, we transformed the functional data using PCA as
above, but with dimensionality fixed at 10 components.
For each participant, task condition (i.e., unique com-
bination of shape and operation), and directed pair of
areas (e.g., from PPC to DLPFC), we then calculated
the Granger causality with a lag of 1 TR between each di-
rected pair of principal component signals (e.g., between
component i of PPC and component j of DLPFC). As in-
put data for each component, we used the temporal con-
catenation of data from the first 5 TRs of each correct
response trial of that condition, shifted by 1 TR to ac-
count for the HRF delay. We used 5 TRs in this analysis
rather than the 3 TRs used in previous analyses to maxi-
mize the amount of data for the Granger causality calcu-
lations, which require signals of long duration to reveal
influence. However, we did not test the optimum num-
ber of TRs to include in any of these analyses. For each
participant and directed pair of ROIs, this procedure
yielded sixteen 10 × 10 Granger-causal (GC) graphs,
which were used as the patterns for classification. Each pat-
tern was labeled based on either shape or operation and
analyzed using a multivariate classification as in the ROI
classifications described above. Because these patterns
were defined for each task condition rather than for each
trial, we used leave-one-operation-out cross-validation
for the representation analysis and leave-one-shape-out
cross-validation for the manipulation analysis. Directed
connections with classification results that passed false
discovery rate (FDR) correction for multiple comparisons
across the 30 directed pairs in each analysis were used to
construct directed graphs, which were then sorted topo-
logically (see Figure 6B and D). Figure 5 provides a visual
schematic of the information flow classification analysis
procedure.

RESULTS

Performance accuracy was high after an initial training ses-
sion during which participants memorized the shapes, op-
erations, and corresponding letter and number mappings
(responses were correct in 95.8% of trials across partici-
pants and conditions). One-way between-participant analy-
ses of variance showed no significant differences in
accuracy across conditions, confirming that the difficulties

Figure 3. Visual schematic of cross-classification analysis procedure.
(A) Functional data from each ROI (PPC shown here) were transformed
from voxel space to 50 principal component signals using PCA. (B) For a
single cross-classification analysis between two ROIs (PPC and PCU
here), the correlation distance between each pair of principal
component signals was calculated. This calculation was performed
independently for each classification fold, leaving out the test data from
that fold (visualized here as a gap in the data that was used to calculate
distances). This resulted in a 50 × 50 correlation distance matrix. (C)
The trace of this correlation distance matrix was minimized using the
Hungarian algorithm to compute a matching of component signals
between the two ROIs that maximized their pairwise similarity (i.e.,
minimized their correlation distance). (D) This procedure resulted in a
common 50-dimensional feature space shared between the two ROIs.
Matched principal component signals between ROIs were maximally
similar to each other. (E) A cross-classification analysis was performed
using these transformed functional data. The classifier was trained on
data from one ROI (PPC in this case) and tested on data from the other
ROI (PCU in this case). Other than the difference between training and
testing data, the classification was carried out identically to that of the
ROI-based analyses in Figure 2.

300 Journal of Cognitive Neuroscience Volume 28, Number 2



of shapes and operations were well matched (for shapes:
F(3, 72) = 1.65, p = .185; for operations: F(3, 72) =
0.369, p = .775; see Table S1 for behavioral results).
In addition, participants showed no difference in re-
sponse times (RTs) between the operation conditions
(F(3, 72) = 0.0509, p = .985; Table S2). Participants
did show a significant difference in RTs between the
shape conditions (F(3, 72) = 6.107, p = 9.24 × 10−4),
but an ROI classification analysis for shape (see next
section) with RT-matched subsets of trials confirmed
that our results were not because of this RT difference
(Table S3; all corrected p values < .002).

ROI Classification Analysis

Our ROIs for analysis of the fMRI data were the six bi-
lateral cortical regions that contained information per-
taining to the transformation of visual imagery in a
previous study that used data independent from those
of the current study (Figure 2A; see Methods for details
on how these ROIs were defined; Schlegel et al., 2013).
Each area has been shown to play a role in neural pro-
cessing related to the current task (Crowe et al., 2013;
Harrison & Tong, 2009; Margulies et al., 2009; Zacks,
2008; Schall, 2004; Tanaka, 1996). We used multivariate
decoding methods to determine whether each ROI sup-
ported information about mental representations and/or
mental manipulations of visual imagery, that is, whether
patterns of neural activity in each ROI could be used to
classify either the shape that was represented in visual
imagery during each trial or the operation that was used
to manipulate that representation.
Because of the hierarchical relationship that we in-

troduced among shapes and operations, we measured
classifier performance using a representational similarity
analysis in which we correlated the confusionmatrix result-
ing from each four-way classification with the matrix form
of this hierarchical similarity structure (Figure 1A and B;
Schlegel et al., 2013; Kriegeskorte, Mur, & Bandettini,
2008). This measure allowed us to use information from
both correct classifications (classification “hits”) and spe-
cific patterns of confusion (classification “misses”) between
conditions that resulted from the relationships among
shapes and among operations. Thus, classification was only
“successful” if the classifier performed according to our
hypothesized pattern of correct classification and con-
fusion, allowing us to achieve greater sensitivity than purely
“accuracy”-based classification methods and to verify that
our results were not because of task-irrelevant factors
such as the letters or numbers used in the task mapping.
Initial classifications using the union of all ROIs con-

firmed that the information processing structure of this
network matched precisely the similarity structures of
both shape and operation sets (Figure 2B and C; for
shapes: t(18) = 10.6, p = 8.59 × 10−26; for operations:
t(18) = 16.0, p= 4.54 × 10−12; results are FDR corrected
for multiple comparisons). This result also held true for

classification analyses performed on each ROI separately
(Figure 2D; FDR corrected for multiple comparisons
across the seven total analyses for each classification
scheme). Because all of our results were significant, we
verified the specificity of our analysis by conducting con-
trol classifications using two additional masks. The first
was a functionally defined, bilateral thalamus ROI from
our previous study that showed increased but not task-
specific activity during mental manipulation of imagery
compared with maintenance of imagery; the second
was an anatomically defined ventricle mask. None of
the four control classification analyses using these masks
reached significance, confirming that our original analy-
ses detected information about the shapes and opera-
tions specifically within our six ROIs (see Table S4 for
ROI control analysis results). As a further control to con-
firm that our analysis was valid and unbiased, we shuffled
the labels randomly in each classification and found that
the correlations between confusion matrices and model
similarity structures were no longer significant (Table S5).
Thus, neural activity in each ROI supported information
about both representation and manipulation of visual
imagery. This result provides evidence that processing
of both representations and manipulations is distributed
throughout the mental workspace network, running coun-
ter to models such as Baddeley’s or Postle’s that pro-
pose that its component processes are segregated to
particular cortical regions (Sreenivasan et al., 2014; Lee
et al., 2013; Postle, 2006; Baddeley, 2003; Ishai et al.,
2000). The large effect sizes and specificity of our results
underscore the sensitivity of our experimental design and
representational similarity–based analysis for uncovering
information that other techniques such as univariate anal-
yses or two-way classifications may have missed.

ROI Cross-classification Analysis

Our previous analysis suggests that information about
both representations and manipulations is distributed
throughout the mental workspace network, but what is
the nature of the information carried by each region?
Our hypothesis implies that information is shared com-
monly throughout the network. Alternatively, however,
each network node could process a unique informational
aspect of representation and manipulation. For instance,
Lee and colleagues (2013) suggest that, whereas visual
cortex represents image-level information (e.g., edges,
corners, contours), information in pFC is conceptual in
nature (e.g., “the T shape” or “the tadpole shape”). In
this alternative scenario, we would expect our previous
classification analysis to succeed in both visual cortex
and pFC, although the classifier would have picked up
on different information in each region. To resolve be-
tween these possibilities, we developed a novel multivar-
iate cross-classification analysis to investigate whether
information is shared among the nodes of the mental
workspace network. In a cross-classification analysis, a
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classifier is trained on one data set (in this case, one ROI)
and tested on a different data set (in this case, a different
ROI). A successful cross-classification provides evidence
that information is shared between the two data sets.
In this case, it would provide evidence that information
is shared between the two ROIs, rather than the alterna-
tive possibility that both ROIs support information about
the task but in separate formats. However, we initially
face a technical hurdle to cross-classifying between ROIs
because cross-classification requires the two data sets to
share the same feature space. In other words, cross-clas-
sification would require the feature space of each ROI to
have identical dimensionality (e.g., same number of vox-
els) and each feature of one ROI to carry the same mean-
ing as the corresponding feature in the other ROI. Voxel-
based ROIs do not meet either of these criteria, so we first
needed to transform each ROI’s data into a common fea-
ture space before we could perform the cross-classifica-
tion analysis.

Conceptually, we hypothesized that the functional data
for a given ROI were a set of signals in voxel space that
represented a mixture of a number of underlying infor-
mational subprocesses that were shared in a distributed
manner between the ROIs. If this characterization is valid,
then PCA would allow us to transform our voxel-based
data independently for each ROI to recover a set of prin-
cipal component signals that represented those underlying
subprocesses that were mixed between the voxel-space
signals that we actually measured. We therefore used
PCA to convert the voxel-based data from each ROI into
50 principal component signals. We chose the number
50 to construct classification patterns of sufficient size
while remaining smaller than the size of our smallest ROIs;
however, we did not test whether this was the optimum
dimensionality to use. This step allowed us to establish
feature spaces for the ROIs that had uniform dimen-
sionality. The second step required to construct a common
feature space for cross-classification was to rearrange the
dimensions of these feature spaces such that correspond-
ing features carried the same informational meaning
across ROIs. To achieve this, for each cross-classification
between two ROIs, we performed a pairwise matching of
component signals between the two ROIs to maximize the
total correlation between matched component signal pairs
(i.e., so that each component signal from the first ROI
was matched to a maximally similar signal from the second
ROI). We performed this matching step independently for
each fold of the cross-classification, leaving out data from
the testing set to avoid artificially inflating the similarity
of test patterns across the two ROIs.

This two-step process yielded a common 50-dimensional
feature space for each fold of each cross-classification
analysis (see Figure 3 for a visual schematic of the pro-
cedure). Classification then proceeded exactly as in the
previous ROI classification analysis. We cross-classified
between each pair of ROIs, with results presented in
Figure 4 (all results FDR corrected across the 15 ROI

pairs). We could successfully cross-classify mental repre-
sentations between most pairs of ROIs, providing evidence
that information about mental visual representations is
shared widely throughout the mental workspace net-
work. The cross-classification of mental manipulation
was significant only between DLPFC and PPC (t(18) =
1.93, p = .0346 [uncorrected]). However, this result
did not hold after FDR correction. This result suggests
that information about manipulations of visual imagery
is distributed but may be more compartmentalized in
the network, with DLPFC and PPC possibly sharing some
information. As in the ROI classification above, we con-
firmed the validity of the analysis by performing control
analyses in which labels were shuffled randomly. In this
case, the cross-classifications were no longer significant,
ruling out the possibility that our cross-classification results
occurred because of unknown biases introduced by our
analysis pipeline (Table S6). Thus, information about
mental representations is not only distributed throughout
the network but also shared between many network
nodes. The trend in our data suggests that information
about mental manipulations may be shared between
DLPFC and PPC, but we did not find evidence of infor-
mation sharing related to manipulations between any of
the other ROI pairs.

Information Flow Classification Analysis

To investigate how this information becomes shared, we
developed a new method to analyze whether information

Figure 4. ROI cross-classification results. Arcs indicate pairs of ROIs
in which cross-classification was successful. Dotted arcs indicate
classifications that were significant when uncorrected, but which did
not pass FDR correction across the 15 ROI pairs. All other displayed
classifications passed FDR correction. Arc thickness indicates t statistic
values in a one-tailed, jackknifed t test of Fisher’s Z-transformed
correlations between confusionmatrices andmodel similarity structures,
compared with zero (see text). Abbreviations are as in Figure 2.
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is carried in patterns of directed connectivity between
pairs of network nodes. This analysis abstracted away
from information contained in patterns of activity within
neural regions, seeking instead to probe the informa-
tional content of patterns of information flow between
pairs of neural regions. Established methods for assessing
directed connectivity produce a single value that charac-
terizes the degree to which processing in one region is
predictive of later processing in another region (Barnett
& Seth, 2014; Friston, 2011; Lizier et al., 2011). These
methods can detect increases or decreases in directed
connectivity but are insensitive to information that may
be carried via patterns of such connectivity. Because of
this limitation, two processes (e.g., clockwise and coun-
terclockwise mental rotation) may entail distinct patterns
of directed connectivity without involving different over-
all magnitudes of directed connectivity and would thus
be indistinguishable by current methods. Furthermore,
in the present analysis, we were not concerned directly
with whether information flowed between nodes, be-
cause in a densely connected, distributed network, each
node will likely exert a complex pattern of control over all
other nodes. Rather, we wanted to know whether the
condition-specific patterns of directed connectivity be-
tween the underlying informational processes that were
distributed among these nodes supported information
about specific mental representations and manipulations.
If so, then the current analysis would provide further ev-
idence for the findings of the previous two analyses that
the information processing underlying the mental work-
space occurs at a fundamentally distributed level of orga-
nization in the cortex.
As directed connectivity patterns, we used GC graphs

constructed independently for each unique task condi-
tion (Barnett & Seth, 2014). Granger causality is a statis-
tical method for evaluating the ability of a source signal to
predict the future of a destination signal beyond the pre-
dictive power provided by the destination signal’s own
past. Although the validity of Granger causality for fMRI
data has come under scrutiny, computational and empir-
ical work has shown that it is a viable technique when
proper precautions such as those used in this study are
taken (Barnett & Seth, 2014; Friston, Moran, & Seth,
2013; Wen, Rangarajan, & Ding, 2013). Specifically, we
investigated differences in patterns of Granger causality
between conditions rather than attempting to establish
“ground-truth” connectivity between regions. Our GC
graphs were constructed as follows: First, voxel-based
data from each ROI were transformed individually using
PCA into 10 principal component signals, with the same
rationale as described above for the cross-classification
analysis. We used 10 components here instead of 50 so
that our resulting GC graphs would have a reasonable
dimensionality for classification, but we again did not
evaluate the optimal dimensionality to use. Next, we con-
structed a 10 × 10 GC graph for each of the 16 unique
task conditions (e.g., Shape 1 + clockwise rotation), each

Figure 5. Visual schematic of information flow classification analysis
procedure. (A) Functional data from each ROI (PPC shown here) were
transformed from voxel space to 10 principal component signals using
PCA. (B) For a given directed ROI pair (PPC to PCU here) and condition
(Shape 1 and clockwise rotation here), the Granger causality from the
source ROI to the destination ROI was calculated for each pair of principal
component signals (PPC component 1 and PCU component 3 here),
using only data from trials of that condition. (C) This resulted in a 10 ×
10 GC graph for each participant, directed ROI pair, and condition. (D)
The resulting 16 GC graphs for a given participant and directed ROI pair
could be labeled based on either shape or operation. (E) A classification
analysis then proceeded as in the other analyses, except that either
leave-one-shape-out or leave-one-operation-out cross-validation was
performed.
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participant, and each directed pair of ROIs (e.g., from PPC
to DLPFC). Each GC graph was constructed by comput-
ing the Granger causality from each of the 10 principal
components in the source ROI to each of the 10 principal
components in the destination ROI, using only data from
one task condition.

For each participant, task condition, and directed pair
of ROIs, this process yielded a pattern of directed con-
nectivity (the GC graph) that represented a task-specific,
directed pattern of information flow between regions. We
then used these GC graphs as inputs to classification

analyses as described above, with results presented in
Figure 6 (Figure 5 provides a visual schematic of this anal-
ysis). Complementing our ROI classification and ROI
cross-classification results, we found that frequently bidi-
rectional patterns of directed information flow between
many nodes of the mental workspace network could be
used to classify the mental shape representations. A topo-
logical sorting of the resulting directed graph of signifi-
cant classification results revealed a posterior-to-anterior
hierarchy for mental representations, with the OCC at the
top and connectivity cascading down to the DLPFC (i.e.,
a bottom–up hierarchy; Figure 6B). The pattern of re-
sults for the manipulation classification shows a sparser
graph, with the DLPFC and FEF at the top of an anterior-
to-posterior hierarchy (i.e., a top–down hierarchy;
Figure 6D). Here, being placed at the top of the hierarchy
indicates dominance in the sense that a higher node sup-
ports more information in outward flowing rather than in-
ward flowing directed connectivity patterns. As in the
previous two analyses, we performed control classifica-
tions with shuffled labels, confirming the validity of the
analysis (Table S7).

DISCUSSION

The mental workspace is a cognitive system that enables
the volitional, flexible mental operations underlying the
mathematical, scientific, and artistic creativity that dis-
tinguish humans as a species (Logie, 2003; Dehaene &
Naccache, 2001). Here, we applied novel network-level
pattern analysis methods to reveal the structure of infor-
mation flow in the neural network that supports the men-
tal workspace. We find that the component processes of
representing and manipulating visual imagery entail a
level of informational organization that transcends the
anatomical structures that standard models of working
memory regard as functionally encapsulated modules.
Instead, our data imply that such processes emerge out
of the fundamentally distributed sharing and flow of
information between the nodes of a cortex-wide network.
We found that representations entail the sharing and flow
of information between all of the ROIs we tested. Mental
manipulations showed patterns of information flow
between all but one of our ROIs, but we did not find sig-
nificant sharing of information at the scale of our fMRI
data after correcting for multiple comparisons. It is im-
portant to note, however, that further information shar-
ing and flow could have occurred at spatial or temporal
scales or levels of information processing to which our
data or analyses were insensitive. Because fMRI data are
temporally low-pass filtered by the HRF, our data can
only address information flow that occurs on the scale
of seconds. Nonetheless, our findings call into question
“textbook” anatomically modular models of the neural
basis of working memory and other higher-order mental
functions (Sreenivasan et al., 2014; Lee et al., 2013;
Postle, 2006; Baddeley, 2003; Kane & Engle, 2002).

Figure 6. Information flow classification results. (A) Graph indicating
directed ROI pairs in which patterns of information flow could be used
successfully to classify mental representation. Dotted arrows indicate
classifications that were significant when uncorrected, but which did
not pass FDR correction across the 30 directed ROI pairs. All other
displayed classifications passed FDR correction. Arrow thickness
indicates t statistic values in a one-tailed, jackknifed t test of Fisher’s
Z-transformed correlations between confusion matrices and model
similarity structures, compared with zero (see text). Light red arrows
indicate posterior-to-anterior connections, and dark red arrows indicate
anterior-to-posterior connections. The greatest effect occurred for the
OCC-to-LOC connection, and the smallest significant effect occurred
for the LOC-to-DLPFC connection. Both effect sizes for these two
connections are indicated on the graph for reference. Abbreviations
are as in Figure 2. (B) A topological sorting of the graph from A reveals
that the OCC resides at the top of a bottom–up hierarchy of information
flow for mental visual representations. (C) Graph indicating directed
ROI pairs in which patterns of information flow could be used
successfully to classify mental manipulation. Arrow properties are as in A.
(D) A topological sorting of the graph from C reveals that the DLPFC
and FEF reside at the top of a top–down hierarchy of information flow
for mental manipulations of visual imagery.
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Existing neural models of working memory and related
processes could be described as “distributed” in the
sense that they assign the component functions of work-
ing memory to anatomical modules that are distributed
across the brain. However, a key advance in this study
is to suggest that even these component processes that
underlie the more complex functions we studied are dis-
tributed in the brain. Thus, contrary to models such as
Baddeley’s that localize executive functions to lateral
pFC and the storage of visual representations to OCC,
our data suggest that informational processing in the
mental workspace is more fundamentally distributed.
Thus, anatomy may be incidental for at least some as-
pects of the high-level mental functions studied here,
with the actual functional separation of processes occur-
ring at a higher level of informational organization.
Our work advances recently developed analytical

techniques that approach the brain as an information pro-
cessing network. Multivariate classification and representa-
tional similarity analyses allow the informational structure
of processes at many levels of organization to be probed
(Haxby, Connolly, & Guntupalli, 2014; Kriegeskorte et al.,
2008). Directed connectivity measures enable the investi-
gation of effective functional coupling between network
nodes (Barnett & Seth, 2014; Seghier & Friston, 2013;
Lizier et al., 2011; Schurger, Pereira, Treisman, & Cohen,
2010; Xue et al., 2010). Here, we adapted these techniques
to answer two new kinds of question. First, our ROI cross-
classification analysis was able to evaluate whether infor-
mation is shared between multiple network nodes. Note
that traditional representational similarity analyses as pro-
posed by Kreigeskorte and colleagues (2008) are not able
to answer this question generally. For instance, it could
have been the case that visual cortex represents mental
images only at a stimulus level (e.g., edges, corners, con-
tours) whereas pFC represents those images only at a con-
ceptual level (e.g., “the T shape” or “the tadpole shape”).
In this case, the dissimilarity structures derived from each
ROI could still be highly correlated with each other (e.g.,
Shape 1 and Shape 2 are similar at the stimulus level be-
cause they are both derived from a rectilinear grid and
are also “conceptually” similar because they both look like
letters). However, these matching dissimilarity structures
would have derived from very different underlying informa-
tional spaces, and thus, it would be erroneous to conclude
that the correlation between those dissimilarity structures
indicates sharing of information between the ROIs. The
second question that our new techniques allowed us to ad-
dress was whether patterns of information flow between
network nodes carry information about the functional sig-
nificance of the connections between those nodes. These
questions and the techniques described here to investi-
gate them are generally applicable across a range of topics
both within neuroscience—for instance, learning (Bassett
et al., 2010), intelligence (Jung & Haier, 2007), language
(Schlegel, Rudelson, & Tse, 2012), and attention (Baldauf
& Desimone, 2014)—and in other fields that study similar

informational networks in biology and beyond (Bassett &
Gazzaniga, 2011).

It should be noted that using fMRI restricted our sen-
sitivity to functional interactions occurring at millimeter
or larger spatial scales and on the order of seconds. It
is likely that we missed the sharing and flow of informa-
tion occurring in more local small-scale neural circuits
and on shorter timescales than we could measure. For
instance, the reduced sharing of information and con-
nectivity we found for manipulations of visual imagery
may not be an indication that such sharing and connec-
tivity do not occur in the brain, if such processes occur at
finer spatial or temporal scales than fMRI can measure.
In addition, focusing on the six ROIs that had prev-
iously shown information pertaining to visual imagery
increased the power of our analyses within this re-
stricted network. However, this statistical power was
gained at the expense of potentially missing a larger
scope for the mental workspace network. Indeed, we
previously found six additional bilateral neural regions
in the cerebellum, thalamus, medial temporal lobe,
supplementary eye field, frontal operculum, and medial
frontal cortex with activity that differed depending on
whether visual imagery was manipulated or maintained,
but we could not classify between different mental opera-
tions in these regions and thus have yet to determine the
contribution of these additional nodes to the types of
behaviors studied here (Schlegel et al., 2013). Future work
should investigate whether the mental workspace network
is even larger and more distributed than we report here.

Although we found shared information pertaining to
representations in each of the ROIs we studied, an alter-
native explanation for this finding could be that informa-
tion about representations merely spreads passively from
a single area such as visual cortex that actually processes
that information. However, our finding of widespread
bidirectional information flow between many network
nodes suggests that this is an unlikely possibility. The bi-
directionality, density, and hierarchical nature of the con-
nectivity between these nodes lead more parsimoniously
to an interpretation that the brain processes mental visual
representations in a fundamentally distributed manner.

Connectivity analyses such as those presented here are
vulnerable to the lurking variable problem, in which two
network nodes appear to support a direct informational
connection when in fact each supports independent yet
parallel processes or is mutually driven by a third unknown
process. Our information flow results may be affected by
this situation, because our network showed a dense pat-
tern of connectivity and we did not test each connec-
tion for mediating variables. Because of this, we suggest
that these findings be interpreted more holistically as pro-
viding evidence for fundamentally distributed information
processing in the brain, rather than as having deduced a
precise wiring diagram of the mental workspace network.

Finally, our results should not be interpreted to mean
that anatomically modular processing does not occur in
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the cortex. Indeed, a rich body of evidence from lesion
and other studies suggests that there are many cognitive
functions, working memory included, for which specific
regions of the cortex are necessary (Damasio & Damasio,
1989). However, our data do suggest that anatomical
modularity cannot provide a complete explanation of
the neural processes underlying the mental workspace.
To contrast exclusively between either “distributed” or
“modular” processing would be too simplistic, because
even a relatively simple conceptual construct like a “mental
representation” likely has a complex implementation in the
brain that plays out over multiple regions and at multiple
levels of informational abstraction. Thus, although our data
speak against models that make anatomically modular
claims such as “Visual cortex is the representational mod-
ule of visual working memory,” they do not inform other
statements of modularity such as “Visual cortex and DLPFC
both mediate mental representation, but they play unique
roles in that process.” Our data even leave open the possi-
bility that cognitive processes such as mental representa-
tion require both anatomically modular and fundamentally
distributed processing, but at different temporal scales. In
support of this idea, a recent study by Siegel, Buschman,
and Miller (2015) suggests that both localized and dis-
tributed processing may occur during different stages of
working memory tasks. The unique contribution of each
type of processing remains to be determined.

Our results provide new evidence that high-level cog-
nitive processes such as the representation and manipu-
lation of visual imagery are mediated via the complex,
fundamentally distributed sharing and flow of infor-
mation throughout the cerebral cortex. Although much
work in cognitive neuroscience has been concerned with
reducing the brain’s functions to discrete, localized re-
gions, our results provide evidence that the component
processes of at least some forms of high-level cognition
transcend anatomically segregated structures, emerging
fundamentally from the interaction between several levels
of organization (Bassett & Gazzaniga, 2011; Bressler &
Menon, 2010). The field has found studying such interac-
tions vital yet difficult (Insel et al., 2013; Markram, 2012;
Bressler & Menon, 2010; Bullmore & Sporns, 2009), and
the new methods reported here to investigate the struc-
ture, sharing, and flow of information in the brain may
prove useful in understanding many other complex
cognitive processes (Schlegel et al., 2012, 2015; Baldauf
& Desimone, 2014; Bassett et al., 2010; Jung & Haier,
2007). Future work should investigate how precisely the
distributed flow of information in the cortex supports
high-level cognitive abilities and whether this mode of
information processing is unique to certain forms of
cognition or common across many cortical functions.
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